Enro	ollment No:	
	C.U.SHA	AH UNIVERSITY
	Summe	r Examination-2022
Subj	ect Name: Group Theory	
Subj	ect Code: 4SC05GRT1	Branch: B.Sc. (Mathematics)
Sem	ester: 5 Date: 25/04/202	22 Time: 11:00 To 02:00 Marks: 70
(
Q-1	Attempt the following que a) For a group $(Z_5, +_5)$ then $(Z_5, +_5)$	$O(4) = \underline{\hspace{1cm}}.$
		ot group? (0 (c) $(R,+)$ (d) $(Z,+)$
	c) Let G be a group of order n (a) a (b) a^2 (c)	a, for any $a \in G$ $a^n = \underline{}$ (0) $e (d) a^{-1}$
	d) The number of generators in (a) 1 (b) 2	n group $(Z_6, +_6)$ is
	e) $\sigma = (1 \ 2 \ 4 \ 5 \ 3) \in S_5$ is an	
	f) The permutation $\begin{pmatrix} 1 & 2 & 5 \\ 3 & 4 & 1 \end{pmatrix}$	$\begin{pmatrix} 3 & 4 \\ 5 & 2 \end{pmatrix}$ is equal to
	g) Let <i>G</i> be a finite group of or then	(2)(3)(c)(135)(56)(d)(142)(53) rder m and H be a subgroup of G of order n
	h) Which of the following is tr(a) Every finite group is cy	velic (b) Every cyclic group is abelian
	i) Every group of prime order	
	i) (Z_4 , $+_4$) is group then 2 +	sub –group (iv) Normal group 43 = 3

(d)

(01)

A cycle of length two is called l) (01)(a) remainder (b) transposition (c) disjoint cycle (d) None

m) If H_1 and H_2 are two subgroups of G, then which following is also a subgroup of (01)Page 1 || 3

G. $H_1 \cap H_2$ (b) $H_1 \cup H_2$ (c) $H_1 H_2$ (d) (a) None **n**) If $G = \{1, -1, i, -i\}$ is a multiplicative group then order of -i is _____. (01)(b) (c) (d) Attempt any four questions from Q-2 to Q-8 Q-2 Attempt all questions (14)Show that the set of all Integers form a group under the binary operation defined (05)by as $a * b = a + b + 1 \quad \forall a, b \in Z$ Prove that for any group (G_{\cdot}^*) (i) the Identity element in (G_{\cdot}^*) is unique (05)(ii) the inverse element in (G,*) is unique Show that for group (G,*) (i) $(a*b*c)^{-1} = c^{-1}*b^{-1}*a^{-1} \forall a,b,c \in G$ **c**) (04)Q-3Attempt all questions **(14)** If H_1 and H_2 are two subgroups of group G then prove that $H_1 \cap H_2$ also (05)**a**) subgroup of G Let G be a Group and let $a \in G$ then Prove that $N(a) = \{x \in G \mid xa = ax\}$ is a (05)subgroup of G Let (G,*) is group and $a,b \in G$ then the linear equation a*x = b has unique c) (04)solution inG **Q-4 Attempt all questions** (14)For $\sigma, \mu \in S_5$ where $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 3 & 2 & 4 \end{pmatrix}$ and $\mu = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$ then show that (05)Let G be a group and for $a \neq e$, $a^2 = e \ \forall a \in G$ then show that G is abelian (05)Show that $\sigma_1 = \binom{1234}{2134}$ and $\sigma_2 = \binom{1234}{1243}$ are commute with each other (04)**c**) Q-5 Attempt all questions **(14)** Let G be a group and H be a subgroup of G then prove that $Ha = Hb \Leftrightarrow ab^{-1} \in$ **a**) (05)Suppose o(a) = n for an element a in a group G. Then prove that b) (05)(i) $o(a^p) \le o(a), p \in Z$ (ii) $o(a^{-1}) = o(a)$ (iii) For a positive integer q with (q, n) = 1 then prove that $o(a^q) = o(a)$. Let H be a subgroup of G and $a, b \in G$ then show that $a \in H \Leftrightarrow H = Ha$ (04)c) **Q-6** Attempt all questions (14)Show that the set $\{1, -1, i, -i\}$ is cyclic group with respect to multiplication (05)a) Prove that every cyclic group is an abelian but converse is not true (05)Find the order of each elements in cyclic group $(Z_8, +)$ and also find all (04)generators of z_8 . Attempt all questions Q-7 **(14)** Let $G = (\mathbb{R}_+, +)$ and $G' = (\mathbb{R}_+, \cdot)$, Let $f : G \to G'$ be defined as (05) $f(x) = e^x$, $\forall x \in G$ then prove that f is an isomorphism between G and G'.

b			
		commutative	
	c)	Let $G = \{1, -1, i, -i\}$ and $H = \{1, -1\}$ then show that H is normal subgroup of	(04)
		G	
Q-8		Attempt all questions	(14)
	a)	State and prove Caley's theorem	(07)
	b)	State and prove Langrange's theorem	(07)

